求对角矩阵的 *** (怎样求对角阵)
大家好,关于求对角矩阵的 *** 很多朋友都还不太明白,今天小编就来为大家分享关于怎样求对角阵的知识,希望对各位有所帮助!
如何求对角矩阵
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
2、求对角矩阵的 *** :求出一个矩阵的全部互异的特征值a1。a2。对每个特特征值,求特征矩阵a1I-A的秩。当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系。对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。
3、当知道一个矩阵时,可以利用矩阵相似对角化的 *** 来求一个矩阵的一百次方。如果存在一个矩阵P,使 P逆*A*P的结果为对角矩阵,则称矩阵P将矩阵A对角化。其中P为可以矩阵,即可得 P逆*A*P=C,其中C为对角矩阵。
4、首先打开电脑上的“matlab”软件,在命令行窗口输入一个向量n,向量n有4个元素。接着使用diag函数生成对角矩阵。diag(n,k)可以把向量放在第k条对角线上,k为正值,表示右上。k为负值,则表示左下。在命令行输入diag(n,2),即可把向量放在右上的第二条对角线上。
对角矩阵怎么算
1、求对角矩阵的 *** :求出一个矩阵的全部互异的特征值a1。a2。对每个特特征值,求特征矩阵a1I-A的秩。当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系。对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。
2、对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、所以可以知道对角矩阵的一百次方就等于对角矩阵的主对角元素上的数值的一百次方。同时根据可逆矩阵的性质,可以知道 P逆*P=E,其中E为单位矩阵。
对角矩阵的求法
求对角矩阵的 *** :求出一个矩阵的全部互异的特征值a1。a2。对每个特特征值,求特征矩阵a1I-A的秩。当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系。对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。
对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。
对角矩阵的求法是经过正交化、单位化以后拼成的矩阵,和A的相似对角化中p的求法完全一样。因为A是实对称阵一定存在正交阵P,p的逆就是p的转置,把A化为对角阵,对角矩阵是一个主对角线之外的元素皆为0的矩阵。
当知道一个矩阵时,可以利用矩阵相似对角化的 *** 来求一个矩阵的一百次方。如果存在一个矩阵P,使 P逆*A*P的结果为对角矩阵,则称矩阵P将矩阵A对角化。其中P为可以矩阵,即可得 P逆*A*P=C,其中C为对角矩阵。
OK,本文到此结束,希望对大家有所帮助。